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Memorandum 
 
To: Dr. Ray Struyk 
Subject: New power calculations for MiDA Ghana Roads Project 
 
This memorandum presents new power calculations for the MiDA Ghana Roads Project.  The new 
calculations differ from the earlier ones done for the project proposal and prior to construction of the 
sample design, in several ways.  First, they examine situations (“cases”) that apply to the mid-term 
(“Phase II”) evaluation.  The original calculations applied to estimating the impact between the baseline 
(“Phase I”) and endline (“Phase III”)) surveys, not to the analysis of impact from the baseline to the mid-
term survey.  There are two substantial differences for the mid-term estimates of impact: (1) the mid-
term survey has half the sample size as the baseline and endline surveys (77 localities per design group 
(treatment and control), instead of 154); and (2) since the mid-term survey is being conducted shortly 
after completion of the project intervention (road improvements), it is expected that the project impact 
on prices at the time of the mid-term survey would be less than at the time of the endline survey to be 
conducted over a year after completion of the project intervention. 
 
The second way in which the new power calculations differ from the earlier ones is that we now have 
baseline data from which the variation in prices among localities may be measured.  For the original 
power calculations, usable data on price variation among localities was not available.  In making power 
estimates, it is necessary to relate the minimum effect size to be detected to the level of price variation.  
Since data on the level of price variation were not available earlier, the power calculations were done 
under the assumption that it was desired to detect a price change equal to ten percent of the standard 
deviation of prices, whatever that (unknown) value was.  This is not a very satisfactory approach, but it is 
often done in statistical power analysis when no data are available about the level of variation.  Now 
that the baseline data are available, estimates are available of the level of price variation (measured by 
the coefficient of variation (COV), or ratio of the standard deviation to the mean).  With these data, the 
minimum detectable effect size may be specified as a fractional change in the mean price level, and 
power calculations may be made by relating this value to the value of the COV. 
 
The third way in which the new power calculations differ from before is with respect to the values 
assumed for the correlations between units in the four groups of the evaluation design.  In the new 
calculations, these correlations have been reduced somewhat from the previous values (causing the 
power estimates to be a little more conservative). 
 
The paragraphs that follow discuss these changes in greater detail, and present the new power 
calculations. 
 
In addition to the parameters just mentioned (sample size, COV, and design correlations), power 
estimates depend on two other parameters, namely, the significance level of the hypothesis test and the 
design effect.  The values of these parameters have not been changed from those used in the earlier 
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analysis (i.e., the value of the significance level = the probability of Type I error of rejecting the 
hypothesis when it is true = α = .05, and the value of the design effect is 1.0. 
 
(The design effect is the ratio of the variance of an estimate using a particular survey design to the 
variance of the estimate using simple random sampling.  The design effect varies from 1.0 because of 
design features such as stratification, multi-stage (or cluster) sampling and selection of sample units 
with varying probabilities.  For the statistical power analysis, the formula used to estimate the power 
refers to localities, not to markets or vendors within localities.  With the “marginal stratification” 
approach used to construct the sample design, treatment localities were selected with varying 
probabilities.  Under a “model-based” approach to survey design and analysis, there is no decrease in 
precision or power associated with the use of variable selection probabilities to select the first-stage 
sampling units (for two reasons: for analytical surveys, the first-stage sampling fraction may be assumed 
to be zero, so that the estimated variance depends only on the first-stage sampling unit means, not on 
the variance within units; under a model-based approach, the unweighted model-based estimates are 
unbiased if the model is correctly specified).) 
 
(It is noted that the treatment and control groups contain localities that vary in distance from the 
project roads.  In the data analysis, it is planned to develop regression models that estimate the 
relationship of impact to changes in travel time associated with the program intervention.  The power 
analysis presented here relates to simple double-difference estimates of impact, not to estimates based 
on regression models (such as a covariate-adjusted single-difference model, in which the impact would 
be a coefficient on a treatment indicator variable).  The power formulas for the impact estimates based 
on regression models are different from those for the double-difference estimate, but the results are 
similar (since the impact regression coefficient is similar to a difference estimate).) 
 
It is noted that the power calculations done earlier and those presented here assume that one-sided 
tests of hypothesis are used.  It is not known how price levels will change after the road improvements.  
They may go up, down, or stay the same.  What is important is how they change compared to what they 
would have been had the road improvements not been made.  Because of the road improvements, 
however, it is expected that they will be somewhat lower than what they would have otherwise been.  
Since the direction of the impact (i.e., the direction of the price change after the project intervention 
relative to a counterfactual) is specified, one-sided tests of hypothesis are appropriate.  (This is 
important because a one-sided test is more powerful than a two-sided test, for detecting a change in a 
certain direction.) 
 
Minimum Detectable Effect; Power Curve Estimation 
 
The power of a test of hypothesis is the probability of rejecting the null hypothesis, when it is false.  In 
the present application, it is the probability of detecting an effect (impact) of a specified size, D, called 
the minimum detectable effect (or minimum detectable impact).  The power depends on the effect size, 
D, and the standard deviation, σ, (of the variable of interest) only through the ratio, D/σ.  There are two 
approaches to statistical power analysis.  One is to specify a minimum detectable effect size and 
determine the power of the sample design (sample structure and sample size) to detect an effect of that 
size.  The second is to specify a power level (i.e., the probability of detecting an effect of a specified size) 
and determine the minimum detectable effect that can be detected with that power. 
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In the present project, the approach to assessing impact is called the “Rubin causal model,” the 
“potential outcomes model,” or the “counterfactuals model.”  With this approach, the impact is the 
difference between the price changes (for an item or group of items) that occur when the project is 
implemented and the price changes that would have occurred had the project not been implemented 
(i.e., the counterfactual).  The major problem facing the evaluator is that the counterfactual cannot be 
observed, and the impact must be estimated from data obtained from an appropriate evaluation design 
(in this case, using a double-difference estimator based on a pretest-posttest-comparison-group design). 
 
If it is desired to estimate the power of the mid-term survey data to detect a minimum detectable 
effect, then the size of that effect must be specified.  The problem that arises here is that little is known 
about the expected effect of the roads-improvement project intervention on price levels.  For many 
evaluation projects, such as those intended to increase income, the expected effect may be estimated 
from previous similar projects, or from policy guidelines such as the Millennium Challenge Corporation 
Guidelines for Economic and Beneficiary Analysis (Revised April 2009).  The MCC guidelines are not 
helpful in the present case – they specify effect sizes in terms of economic rate of return (ERR), and little 
is known about the relationship of price changes to ERR.  Because little is known about the expected 
impact of the roads improvement on affecting price levels, the approach of estimating the power 
associated with a minimum detectable effect is not very productive.  As mentioned, this problem was 
overcome in the power analysis done for the proposal by specifying the minimum detectable effect as a 
proportion of the standard deviation of prices.  Now that the baseline data are available, we have 
estimates of the coefficient of variation (standard deviation divided by the mean) for the items priced in 
the survey.  Using the approach of determining power from a specification of the minimum detectable 
effect, this still doesn’t solve the problem, since we still don’t know the size of the minimum detectable 
effect. 
 
In view of the lack of information about the size of the minimum detectable effect, it is necessary in this 
project to use the second approach to power analysis, viz., to estimate the size of the minimum 
detectable effect given a value for the power.  That is the approach that will be used here.  Specifically, 
we shall conduct a “sensitivity analysis,” in which we vary the coefficient of variation (now known for 
the items included in the survey) and determine the “power curve,” i.e., the power as a function of the 
effect size, D.  From the power curve, we may determine the power corresponding to any specified 
effect size, or the minimum detectable effect size corresponding to any specified power.  Given the lack 
of information on the anticipated impact of the project intervention on price levels, this is the best that 
can be done.  Although we cannot identify a particular minimum detectable effect that is of particular 
interest, this approach is nevertheless much more informative than the approach used in our proposal, 
in which neither the minimum detectable effect size nor the coefficient of variation was known, so that 
all that could be done was to estimate the power as a function of the ratio of these two unknown 
quantities.  The proposed sensitivity analysis makes full use of the baseline data (on COVs), to estimate 
the power curves associated with the evaluation design (pretest-posttest-comparison-group design) and 
impact estimator (double-difference estimator (or perhaps a covariate-adjusted single-difference 
estimator)).  While the inability to specify a particular minimum detectable effect may be frustrating, the 
ability to estimate the power curves as a function of COV is very useful, and a substantial improvement 
over what could be done in the absence of the baseline data. 
 
In reviewing the power curves and assessing the power associated with impacts of various sizes, it is 
important to consider the length of time between the completion of the project intervention and the 
follow-up survey on which the impact estimates are being made.  Some time may be required before 
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the full impact of a road improvement on price levels is manifest.  If the mid-term follow-up survey is 
conducted only a few months after the completion of the project intervention, it may be that the effect 
is very small, in which case the power to detect it will also be very small. 
 
Sample Sizes 
 
The earlier power calculations, along with budget considerations, led to the sample sizes being used in 
the study, i.e., 308 localities in the baseline and endline surveys, evenly split between treatment and 
control, and half that number in the mid-term survey.  Prior to completing the mid-term survey, it is 
desired to estimate the power associated with the lower sample sizes of the mid-term survey (i.e., 154 
split between treatment and control groups, 77 in each).  There are two reasons for doing this.  First, not 
all of the planned road improvements have been completed, so that the effect of the program 
intervention may be realized for fewer than 77 of the treatment localities.  In this case, the treatment 
sample size will be less than 77.  Second, some items are not available in all markets, so that the sample 
size for estimating their price change is less than the full sample size.  For the mid-term evaluation, we 
shall examine the power associated with sample sizes of 77 (the full planned mid-term sample size per 
design group), 67, 60 and 55. 
 
Correlations Associated with Matching and Panel Sampling 
 
For estimating changes, it is advantageous to construct the sample design so that there are correlations 
between the treatment and control groups, and between the before and after groups.  Correlations are 
introduced between the treatment and control groups by matching control units (localities) to 
treatment units.  Correlations are introduced between the before and after groups by conducting a 
panel survey in which the same localities are surveyed in each round of the panel survey.  A number of 
the original power calculations assumed rather high values for these correlations.  The statistical power 
analysis presented here assumes somewhat more conservative values (i.e., up to .5 for panel sampling 
and .3 for matching). 
 
Cases Analyzed 
 
Here follows a summary of the power analysis conducted under the preceding assumptions.  (The 
formulas used in the analysis are included in the Appendix.)  The table presents a number of “power 
curves,” which specify the power for a range of values of the effect size (D), given selected values for the 
locality sample size (n) for each design group and selected values of the coefficient of variation, COV 
(holding other parameters, such as α and the various design correlations fixed).  From the baseline data, 
it was observed that the COV generally varied over the range .1 to 1.00 for commodities (fresh food, 
packaged foods and non-food items) and was approximately 1.5 for transport costs (passenger and 
freight).  The table presents power estimates for the following values of the COV: .1, .5, 1.0, and 1.5.  
The locality sample sizes (n) used are (as discussed) 55, 60, 67, and 77 (for each of the four design 
groups (treatment before, treatment after, control before, control after)).  (The table also includes the 
case n=154, corresponding to the endline survey.)   The power is calculated for the following values of 
the effect size, D: 0, .05, .1, .15, .2, .25, .3, .35, .4, .45, .5, and .55.  Note that the power associated with 
D=0 is the significance level of the test, α=.05.  The entry in each cell of the table is the power 
corresponding to the coefficient of variation (COV), sample size (n) and effect size (D) specified in the 
table margins.  Each row of the table is a power “curve” (function specifying power as a function of 
effect size (D)).  
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Power Estimates for Various Values of Design-Group Locality Sample Size (n) and Priced-Item Coefficient of Variation (COV) 
 

n 
 

COV 
Minimum Detectable Effect Size (D) 

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 
 

55 
.1 .05 .96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
.5 .05 .17 .39 .65 .85 .96 .99 1.0 1.0 1.0 1.0 1.0 

1.0 .05 .10 .17 .27 .39 .52 .65 .76 .86 .92 .96 .98 
1.5 .05 .08 .12 .17 .23 .30 .39 .47 .56 .65 .73 .80 

 
60 

.1 .05 .97 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

.5 .05 .18 .41 .68 .88 .97 .99 1.0 1.0 1.0 1.0 1.0 
1.0 .05 .10 .18 .28 .41 .55 .68 .80 .88 .94 .97 .99 
1.5 .05 .08 .12 .18 .24 .32 .41 .50 .60 .68 .76 .83 

 
67 

.1 .05 .98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

.5 .05 .19 .44 .72 .91 .98 1.0 1.0 1.0 1.0 1.0 1.0 
1.0 .05 .10 .19 .30 .44 .59 .72 .83 .91 .96 .98 .99 
1.5 .05 .08 .13 .19 .26 .34 .44 .54 .64 .72 .80 .86 

 
77 

.1 .05 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

.5 .05 .20 .48 .78 .94 .99 1.0 1.0 1.0 1.0 1.0 1.0 
1.0 .05 .11 .20 .33 .48 .64 .78 .87 .94 .97 .99 1.0 
1.5 .05 .09 .13 .20 .28 .38 .48 .59 .69 .78 .85 .90 

 
154 

.1 .05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

.5 .05 .30 .73 .96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.0 .05 .14 .30 .52 .73 .88 .96 .99 1.0 1.0 1.0 1.0 
1.5 .05 .10 .19 .30 .45 .60 .73 .84 .91 .96 .98 .99 

 
The table shows that for items having low variability (low values of the coefficient of variation, COV), the 
power is high for detecting impacts that are small relative to the mean price level, such as D=.1 or .2.  
Out of the 82 priced commodities, about half (42) had COVs less than .3 (10 out of 39 priced fresh foods, 
19 out of 24 packaged foods, and 13 out of 19 non-food items).  For transport, unlike the commodities, 
there were not a lot of different items considered.  Transport cost was measured for just two items, 
passengers and freight tariffs, and both of these had COVs on the order of 1.5. 
 
Summary 
 
From the preceding analysis, it is seen that the power to detect minimum detectable effects from the 
mid-term survey data varies considerably by item.  For a substantial number of products, the variation in 
prices (COV) is sufficiently small that it will be possible to detect effects (price changes, as measured by 
the double-difference estimator) that are small relative to the mean price level with high probability 
(power).  For products with high price variation, the likelihood of detecting changes of this magnitude 
will be small.  For transport costs, the COV is so large (about 1.5) that only very high price changes would 
be likely to be detected (transport costs are highly variable because the destinations are specified for 
each locality, and their costs vary widely). 
 
It is important to keep in mind that it may take some time for the program intervention effects to 
become manifest.  If the mid-term survey is conducted just a few months following the completion of 
the road improvements, the effect may be very small, simply because it takes some time for prices to 
adapt to the new situation.  Before proceeding on the mid-term survey, it should be recognized that if it 
is done shortly after completion of the road improvements, few or no price changes may be detected, 
even for products with small COVs.  Given this fact, it may be desirable to consider cancellation of the 
mid-term survey, and allocating the funds to some other purpose.  Little value would be realized from 
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simply postponing the mid-term survey, since then it would show about the same results as the endline 
survey.  It would be of very little advantage to reallocate the funds used for the mid-term survey to 
increase the sample size for the endline survey, since the evaluation design is a panel survey in which 
the same localities are observed in the follow-up surveys as were observed in the baseline survey (the 
addition of new localities for which no baseline data is available are of little value in increasing power). 
 
Assessment of Validity of Power Estimates 
 
The power calculations are made assuming values for a number of parameters.  This memorandum has 
presented a “sensitivity analysis” to quantify the effect of the assumptions on the power estimate.  For 
the most important parameters – price variation (as measured by the COV, estimated from the baseline 
survey data) – the parameter values are well founded (i.e., based on baseline survey data), and it is 
simply a matter of deciding which case (COV and sample size) is of interest.  For some design parameters 
– the correlation associated with panel sampling and with matching – the assumed values are somewhat 
speculative, but considered reasonable based on experience.  The remaining parameter is the 
significance level (α, the probability of a Type I error) used for tests of hypotheses.  This has been set at 
.05, which is a “conservative” (and standard) value (i.e., the chance of deciding that an effect is 
significant when it is not, i.e., .05). 
 
Analysis of the baseline survey data included regression analysis to estimate the relationship of prices to 
a number of explanatory variables, and these regressions were seen to have low explanatory power 
(value of R2, the coefficient of determination, of .343 for fresh food items, .254 for package food items, 
and .178 for non-food items).  Furthermore, the relationships are expected to be weaker for double-
difference estimates of impact than for the raw (undifferenced) price data.  Hence the power will not be 
appreciably increased through the use of covariate adjustment. 
 
In summary, it is believed that the power estimates presented above are sound. 
 
 

Appendix. Formulas Used to Estimate Power 
 
The formula for the power of a test of hypothesis about a mean double difference is as follows: 
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where 
μ1 = mean for group 1 (treatment, time 1) 
μ2 = mean for group 2 (treatment, time 2) 
μ3 = mean for group 3 (control, time 1) 
μ4 = mean for group 4 (control, time 2) 
n1 = sample size for group 1 
n2 = sample size for group 2 
n3 = sample size for group 3 
n4 = sample size for group 4 
σ1 = standard deviation for group 1 
σ2 = standard deviation for group 2 
σ3 = standard deviation for group 3 
σ4 = standard deviation for group 4 
ρ12 = correlation between items of groups 1 and 2 
ρ13 = correlation between items of groups 1 and 3 
ρ14 = correlation between items of groups 1 and 4 
ρ23 = correlation between items of groups 2 and 3 
ρ24 = correlation between items of groups 2 and 4 
ρ34 = correlation between items of groups 3 and 4 
(The correlation matrix should be positive definite.) 
α = significance level of one-sided test of hypothesis of equality of group means (the probability 
of Type I error, i.e., the probability of rejecting the hypothesis of equality of group means, when 
it is in fact true) (e.g., .05) 
β = the probability of making a Type II error, i.e., the probability of accepting the hypothesis of 
equality of the group means, when it is in fact false) (e.g., .1) 
1 – β = power of the test (e.g., .9) 
z1-α = 1-α percentile point of normal distribution (e.g., 1.6449 for α=.05, or 1.2816 for α=.1) 
deff = design effect  (The design effect is the ratio of the variance of an estimate for a specified 
survey design, compared to the variance using simple random sampling.) 
D = (true) size of the mean double difference 
a caret (ˆ) over a symbol denotes a sample estimate 
and Pr(.) denotes the normal probability distribution function. 

 
Note that the preceding formula does not contain a finite population correction (FPC).  The FPC is not 
relevant for analytical surveys, where the objective is to make inferences about a process, not about the 
particular finite population at hand. 
 
For the present application, the sample sizes of the four design groups are the same (say, n), and the 
values of the standard deviations (σ’s) or the coefficients of variation COV = σ/μ are the same for the 
four design groups.  In this case, the following formulas (derived from the formula given above) may be 
used to calculate the following quantities: 
 

Power, 1-β: 1-β = 1 – Pr(zk) 
 
where zk = z1-α – (D/σ) sqrt(n) /(deff c) = z1-α – ((D/μ)/(σ/μ)) sqrt(n) /(deff c). 
 
Minimum detectable effect, D: D = (z1-α +z1-β) deff c σ / sqrt(n). 
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Minimum detectable effect as a ratio to σ, D/σ: (z1-α +z1-β) deff c / sqrt(n). 
 
Sample size, n: n = (z1-α +z1-β)2 deff2 c2 / (D/σ)2 = (z1-α +z1-β)2 deff2 c2 / ((D/μ)/(σ/μ))2 
 
where c2 = 4 – 2(ρ12 + ρ13 - ρ14 - ρ23 + ρ24 +ρ34). 
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